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1. Introduction

As microarchitects demand larger on-chip caches for higher
performance, continuous device scaling has provided improved
memory density for multi-megabyte upper-level on-chip caches
at a reasonable die cost. However, the device scaling comes at a
price. The reduced device feature size causes exponentially
increasing subthreshold and gate-leakage power problems in on-
chip caches fabricated with sub-90 nm process technology result-
ing in more static power consumption [2]. Furthermore, process
parameter variations, e.g. random dopant fluctuations causing
threshold voltage variations or mismatches across the devices used
in a on-chip memory cell and more oxide defects in devices during
the manufacturing process have worsened yield problems in on-
chip caches manufactured with sub-90 nm technology [3].

To overcome low yield problems caused by scaling device sizes
and integrating more on-chip memory cells, there have been sev-
eral proposed techniques. One is to implement redundant memory
columns; there are one or two redundant columns per memory
sub-bank or sub-array. If a defective cell is found during the man-
ufacturing test, the entire column containing the defective cell is
replaced with a redundant column. This wastes many memory
cells to fix one defective cell and requires fuses to replace the col-
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umn containing the defective cell with the redundant column. The
second technique is to use error correction codes (ECC). Currently,
a single error correction (SEC) and double error detection (DED)
technique is used. Even though this can fix one defective cell per
sub-array row, the memory array is made more vulnerable to soft
errors since the correction capability of the code has been used up
by fixing defective memory cells. The third technique is to disable a
part of the on-chip cache memory array resulting in a smaller size.
An example is the Intel Celeron processor. It is very similar to the
Pentium processor, but it has the entire or half of the L2 cache dis-
abled as a result of memory sub-arrays containing defective cells
that could not be fixed using the redundant columns in the dis-
abled part of the on-chip cache memory block. All these techniques
are only effective when there are a small number of defective cells
in the on-chip cache. However, the number of defective cells in
large on-chip caches will rise if we want to continue scaling mem-
ory cell size along with technology scaling.

Hard-wired redundancy is becoming a less attractive option due
to limited area available for spare memory cells. In addition, it will
no longer be possible to find a single set of cache blocks which con-
sistently fail at each operating point [3]. Prior work suggests that
avoiding defective cache memory cells at the block level can be
very cost-effective in terms of both area and performance over-
heads. However, these studies were performed with either out-
dated cache hierarchies and benchmarks [4] or for direct-mapped
caches only [1]. Under aggressive voltage scaling and on-chip
memory cell sizing, we show that higher defect rates with existing
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fault-tolerance schemes result in significant processor perfor-
mance degradation. A dynamic voltage scaling (DVS) environment
adds to the complexity of working with on-chip caches containing
unpredictable defective memory cells; as the operating voltage
changes, so does the number of defective cells.

In this paper we begin with an analysis of L2 cache activity in a
modern processor architecture based on the Intel Pentium 4.
Emphasis is placed on L2 caches because of their widespread use
and relatively large area compared to L1 (L1 caches are also rele-
vant, and the error analysis within this paper can also be applied
to other levels besides L2). We show the impacts of defective cache
blocks on performance and compare ways of addressing this prob-
lem. The major contributions of this paper are;

e Trade-off analysis between performance and area for different
cell sizes and fault-tolerance techniques.

e A novel cache block grouping scheme for good performance at
higher fault probabilities.

The rest of the paper is organized as follows. Section 2 presents
related work and explains in detail the basic fault-tolerance
scheme upon which this work is based. Section 3 explains the
problems encountered with on-chip cache memory reliability in
new processes and its impact on performance of set-associative ca-
ches when defects are present. Based upon this analysis, we show
existing and proposed techniques of reducing performance im-
pacts in the presence of defects in on-chip caches in Section 4.
The techniques are compared in Section 5, and concluding remarks
are presented in Section 6.

2. Related work

Pour and Hill [4] derive an analytical model of the performance
loss of a set-associative cache given a set of defective blocks. They
employ an extra “valid” bit per cache block to identify whether or
not it is defective. Their key findings for caches of size up to 32 kB
are that miss ratio increase is negligible unless a set is completely
disabled by faults.

In [5] they present a model to estimate memory-failure proba-
bility using combined row and column redundancy. The Power4
architecture [6] employs parity on L1 caches and Hamming codes
on L2. In addition, L1 and L2 have spare bits, while L3 has redun-
dant cache lines. If correctable error thresholds are exceeded, a
cache line delete function allows up to 2 deletions per L3 cache.
For defects detected at power-on BIST that cannot be handled,
the L3 cache is disabled.

The Nanobox [7] applies redundancy and other ECC codes to lo-
gic functions built using lookup tables.

A technique for memory self-repair at high defect densities is
presented in [8]. It relies upon prior knowledge of the polarity of
the error (i.e. faults are always stuck at 0 or 1). In our cache appli-
cation, the scheme will not work because the value read from
faulty bits is unpredictable and can change with operating point
(e.g. voltage or temperature).

Agarwal et al. [1] noted that the number of defective cells and
their location changes depending on operating voltage. In addi-
tion, they proposed a cache block re-mapping technique for di-
rect-mapped caches. The technique relies on a defective block
mapping table determined prior to execution using BIST. They
consider the use of block re-mapping in conjunction with ECC
and row redundancy. Because we often refer to this scheme in
the paper, it is explained in more detail as follows. Fig. 1 is the
same figure as Fig. 7 in [1] and illustrates the fault tolerance
scheme presented in that work. It is based on a direct-mapped
cache consisting of lines organized in rows and columns. Rows
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Fig. 1. The one bit implementation (OBI) technique.

are addressed as usual using part of the incoming address. How-
ever, the column address may be re-mapped to avoid a known
faulty block. This is achieved by performing a look-up in the
“config storage” which contains a map of defective block loca-
tions. In this instance, there is one bit per block (hence one bit
implementation, or OBI) which is set to 1 if the corresponding
block is defective. When the cache is accessed, the controller
uses the OBI to select a non-defective column to store data to,
using a fixed mapping. Additional bits are required in the tag
to indicate the column in which data is stored. This prevents
faulty blocks from being read.

3. Impact of on-chip cache failure rate on processor
performance

3.1. On-chip cache device scaling and failure rate

Currently, the feature sizes (e.g. 45 nm) are so small that it is
very difficult to control the uniformity of device parameters across
dies and wafers. In particular, smaller devices that are extensively
used in on-chip cache memory cells are increasingly sensitive to
parameter variations. Furthermore, dynamic voltage scaling is very
commonly used to reduce power consumption of the processors
and their on-chip caches should be able to operate at the same
voltage as the processor core, to avoid adding overhead to allow
separate voltage domains. However, as the supply voltage of on-
chip cache memory cells decreases, we find more memory cells
failing due to increased sensitivity to process variation at lower
supply voltage. Failure types are read failures (flipping of the
stored state during read operations), write failures (inability to
write a state during write operations), access time failures (an in-
crease in the access time of the cell resulting in the violation of the
delay requirement), and/or retention failure (losing the stored
state in standby mode) [10,11]. As a result, the lowest operating
voltage (called V..min) of processors employing DVS is usually
determined by the lowest supply voltage that keeps all on-chip
memory cells functional. However, lower V..min is desirable if sta-
tic and dynamic power consumption are to be reduced. The best
way to improve V..min is to increase memory cell size to reduce
the process variation sensitivity of the memory cells. However, a
larger memory cell size increases the area occupied by on-chip ca-
ches resulting in increasing die cost or decreasing the on-chip
cache size at a given die size (e.g. 12 MB instead of 16 MB for a
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L3 cache). Hence, the memory cell size must be balanced to give
proper V.min, yield, and on-chip cache capacity.

Fig. 2 shows normalized on-chip memory cell failure rates for 3
different memory cell sizes (A, B and C with relative areas of 1,
1.25, and 1.5, respectively) as a function of memory cell supply
voltage. Note that depending on how we tune the sizes of the six
transistors in the memory cell, the result varies significantly. They
are obtained using Monte-Carlo simulations on memory cells de-
signed with a 45 nm technology and process parameter variations
corresponding to the technology. The failure rate we assume is sig-
nificantly higher than the data presented in other work [1], how-
ever the increased failure rates can be expected in future smaller
semiconductor process technology (e.g., 32 nm technology). As
shown in Fig. 2, as either voltage or cell size decreases, the failure
rate starts to increase exponentially. In other words, a larger cell
can achieve a much lower V.cmin at the same failure rate. Finally,
defect rate is proportional to die size. Hence, when we integrate
more on-chip memory cells on a die along with device scaling,
there will be a much greater chance that some memory cells con-
tain defects and fail during post-manufacturing tests resulting in
poor yield. The next section examines the relationship between
on-chip cache memory cell failure and performance impact to
determine the number of tolerable, non-corrected faults.

3.2. Performance impact of set-associative cache defects

The performance impact of on-chip cache memory cell failure
partly depends upon the fault-tolerance technique employed.
While some impact arises from increased miss rates as faulty re-
gions are disabled, others incur a performance penalty when er-
ror-correcting codes are decoded.

We perform an analysis of block level fault-tolerance schemes. All
data was obtained using the M5 simulator [12]. The simulator was
configured to represent a modern out-of-order pipeline with similar
specifications to a Pentium 4 (Table 1). The memory latency is rela-
tively low, although this will not significantly affect L2 miss rates.

Fig. 3a and b present the impact of defective blocks in L2 (each
containing 1 or more defective cells) on miss rate and instructions
per cycle (IPC), respectively. We use the SPLASH-2 benchmark suite
[13] as a workload representative of both memory and compute-
intensive applications. In these graphs, defective block locations
are allocated randomly, but consistently between benchmarks.
The LRU scheme was modified so that defective (non-correctable)
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Fig. 2. Normalized cell failure rates as a function of voltage for three different
memory cells.

Table 1

M5 CPU configuration (2 GHz clock)

Parameter Value

Pipeline width 4

Branch prediction/BTB Hybrid 4-way, 2 K entries
ROB/LSQ size 196/32 entries

INT ALUs/multi-divs/mem ports
FP ALUs/multi-divs
Functional unit latencies

IL1 cache

DL1 cache

L2 cache

Memory bus/latency

6/2/4

412

INT: mul 3, div 20, all others 1

FP: adder 2, mul 4, div 12, sqrt 24
16 kB, 2-way, 64B blocks, 1-cycle lat.
16 kB, 2-way, 64B blocks, 3-cycle lat.
1MB, 8-way,64B blocks, 19-cycle lat.
16 bytes with 6-cycle lat./100 cycles

blocks are not considered for replacement. If all ways in a set are
defective, accesses to that set bypass the cache and are forwarded
to the next level of the memory hierarchy. This has the effect of
reducing the number of available ways in a cache set, while using
the standard tag matching mechanism to determine hits or misses
within the remaining good blocks, which is identical to [14]. The
data in Fig. 3a and b confirm the previous study [4] in that high
block failure rates are required before there is any significant per-
formance penalty. With this in mind, the next section compares
existing and our fault-tolerance techniques for their performance
and area at significant failure rates.

4. Comparison of fault-tolerance techniques

The one bit implementation (OBI) mapping table model [1] is
effective for low failure rates, but for higher rates we show that
it rapidly becomes ineffective. We aim to allow more faults with
stronger error correction, and observe the trade-off with area cost.
In this section we derive an analytical model representing the frac-
tion of good blocks remaining in the cache at different cell failure
probabilities (and sizes). We consider tag bits as additional bits
contained in each block.

We compared several cache fault-tolerance schemes in order
to determine their area efficiency at different error rates (volt-
ages and cell sizes). The model used represents the fraction of
fault-free blocks available in the cache, denoted by F.y.. As a
minimum, we decided to first apply the OBI scheme, followed
by other error correction. From a storage standpoint, OBI pro-
vides the minimum data needed to identify where faulty blocks
are, for avoidance. Since it has already been proven superior to
redundant rows and SECDED ECC, all of our models build on
the OBI baseline. OBI does not affect the cache access time and
has minimum effect on processor performance [1]. Throughout
the paper we refer to pr as the probability of failure of a single
on-chip memory cell. Cell failures are assumed to be indepen-
dent. As a first approximation this assumption is valid and has
been widely used in other published cache-error related work
([1.5.8]).

To improve the effectiveness of schemes requiring an additional
storage table (e.g. OBI) which must contain correct bits, we intro-
duce a factor OBIg. This factor reduces the bit failure probability,
representing larger size or higher voltage on-chip cache memory
cells (see Fig. 2) used specifically for that table. We refer to this
as “guaranteed correct” storage because one fault in this table
could lead to bad cells being accessed. Using large cells is viable
as long as the table does not contain too much data. In addition, de-
lay does not vary significantly with cell size. “Basic storage” refers
to the cells used in the cache itself.

The fault-tolerance schemes (Table 2) were chosen from a range
of candidates, most of which are widely used today. We only model
storage-related reliability while logic reliability is beyond the
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Fig. 3. L2 miss rate in (a) and IPC in (b) as a function of number of randomly disabled blocks. A-Cholesky, B-FFT, C-LUContig, D-LUNoncontig, E-Radix, F-Barnes, G-FMM, H-

OceanContig, [-OceanNoncontig, J-Raytrace, and KWaterNSquared, respectively.

Table 2
Candidate cache fault-tolerance schemes and their storage overheads for an 1MB
cache

Schemes Storage Description
OBI 1.002 One bit implementation from [1] indicates a
faulty block with a single bit
Hamming SEC 1.020 Single error-correcting (SEC) hamming code
BCH DEC 1.037 Double error-correcting (DEC) Bose-Chaudhury-
Hocquenghem
log(B) 1.022 Bad block table contains index of one bad bit and
a spare cell to store the value of that faulty bit. If
there is more than one defective bit, the block is
disabled
Triple modular 1.002 Faulty blocks are combined in groups of 3 inside
redundancy the 1MB cache with a majority vote on each bit
(TMR)
Block grouping Up to Pairs of faulty blocks are combined to form single
(GRP2) 1.528 good blocks. A paired block is ‘good’ if there is

only one faulty bit for each corresponding pair of
2 bits

scope of this paper. The following sections explain the fault model
and storage overhead of each scheme.

Each cache consists of M sets and N ways where each block con-
tains B bits (including tag bits).

We also derive an area efficiency E,.., which takes into account
the probability of failure of the “guaranteed correct” storage which
includes the OBI table and any additional bits added by a scheme
which must be correct for the cache to operate reliably. The frac-
tion of available blocks is divided by die area consumed by all
SRAM cells, then scaled by the probability of the guaranteed cor-
rect storage containing no faults Eq. (1).

_ Favail

X pnon,faulty,GC ( 1 )

The Pron_tauity_cc value is the probability that the guaranteed correct
cells are fault-free, as a function of the probability of the large-size
cell failure pgue cc and the number of guaranteed correct bits
(GC_bits).

Pron_faulty_cc = (1 - pfault_GC)GC_bitS (2)

In all of these schemes,

Praute_cc = OBlir X Prayie = 107> X Praye

4.1. Existing fault-tolerance schemes

4.1.1. OBI

The “one bit implementation” consists of a table of bits, one per
block, indicating whether or not each block contains 1 or more
faulty bits. All of our schemes incur this storage overhead, because
we use an OBI to indicate whether a block can be corrected or is
unusable and cannot be accessed.

4.1.1.1. Storage overhead
GC_bits = M x N bits (guaranteed correct storage).

4.1.1.2. Fault model. The probability of a faulty bit is payi.. The prob-
ability of a non-faulty block is the likelihood of every bit being
fault-free in that block. We assume that this probability represents
the fraction of non-faulty cache blocks, as follows;

Favail = (1 - pfault)B (3)

4.1.2. SEC
Single error-correcting (SEC) codes were included due to their
widespread use in existing devices.

4.1.2.1. Storage overhead
b = [log,(B)] 4)

where b is the number of added ECC bits per cache block (basic
storage).

4.1.2.2. Fault model. The model is modified to account for the in-
creased block size (for check bit storage) and the ability to correct
0 or 1 bits.

B+b _
Favait = (1 *pfault)mb + <] > X Pate % (1 *Pfault)mb ! 5)

4.1.3. BCH double error correction (DEC)

The Bose-Chaudhuri-Hocquenghem (BCH) error-correcting
code was selected as a candidate DEC scheme. Alternatives such
as Reed-Solomon and Golay codes are mentioned in [15]. BCH
was chosen because of its low storage overhead. However, in
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practise a less compute-intensive code can be used depending on
the sensitivity of performance on L2 latency. We modeled a DEC
BCH code storage overhead (with minimum distance dpmi,=5)
based upon the equations in [16].

4.1.3.1. Storage overhead
b =2 x[log,(B)] (6)
where b is the number of added ECC bits per cache block (basic

storage).

4.1.3.2. Fault model. The probability of a faulty block is modified to
account for the extra check bit storage and the ability to correct
2 bits.

B+b _
Favait = (1 = Prau)*™ + ( 1 ) % Drate X (1= Prauie)®*™™
B+b _
(757 % b (= pra™? )
4.14. Log(B)

The log(B) scheme is an alternative single error-correcting
scheme. A table stores the index of one faulty cell location per
block, along with an additional bit to hold the correct state of that
cell. This is equivalent to the distant repair scheme of [9] using one
spare unit.

4.1.4.1. Storage overhead
b= [log,(B)] +1 (8)

These b bits per block are held in guaranteed correct storage.

4.1.4.2. Fault model. The fraction of available blocks is identical to
that of SEC except that the additional bits are in guaranteed correct
storage.

B _
Favail = (1 = Praure)” + <] > X Paute % (1= Pgaur)”! 9)

4.1.5. Triple modular redundancy (TMR)

Our triple modular redundancy implementation assigns faulty
blocks to groups of three blocks with a majority vote on every
bit (0 or 1 errors can be corrected per bit position). At most, 1/3
of logical bits can be recovered from the physical bits which are
combined for a majority vote. In a hardware implementation, the
bit comparison for the majority vote is performed at the final cache
output stage. Therefore logic overhead will be small.

4.1.5.1. Storage overhead. No additional storage is allocated to iden-
tify which blocks are combined for TMR. For this typical case anal-
ysis, we assume that faulty blocks are combined with other
arbitrarily located faulty blocks.

4.1.5.2. Fault model. We first consider each bit index as 3 bits which
must have 0 or 1 faults to be corrected. This applies for all B bit in-
dexes. However, because we only combine known faulty blocks
after determining fault-free blocks, none of the three blocks are
ever error-free and this probability (pge0q) is subtracted from the
main expression. The probability of a non-faulty block is
Dnfb = (] - pfault)B-

B

3 2
pgocd = (1 )pnfb |:(‘l - p?ault) + (1 >(1 - pfault) X Dfault

=3(1 = Pupy) (o)’ = 2(Pupy)’ (10)

fraction_repairedy;

1 3 5
= § X (((1 ) X Pfaule X (1 7pfault)2 + (1 7p?ault)> - pg00d>

(11)
Favail = Doy + (1 — Ppgy) % fraction_repairedpyz (12)

4.2. Proposed fault-tolerance scheme

4.2.1. Block grouping

For high error rates, we propose a new scheme (Fig. 4). Faulty
physical blocks are grouped together (in groups of size G) to form
a new, fully working logical block. In the rest of our analysis, we
assume pairs (G = 2). Using larger groups is beneficial at extremely
high error rates, but the analysis is beyond the scope of this paper.
The concept is a similar to [8] except that knowledge of failure
polarities is not required.

Compatible blocks have up to one faulty bit between them, at
every corresponding bit index. This means that an additional
“selector bit,” which is known to be correct, can specify which
bit contains a good value when reading data.

A “grouping table” is accessed as an additional step before a
cache access, to identify the paired block.

e To read a grouped block, all blocks in the group are read. The
selector bits then indicate which block in the pair contains good
data, at each bit index. A single logical block is then returned to
the processor.

e To write a grouped block, the same value is written to every
component block.

4.2.1.1. Grouping table. This table is used to look-up the location of
the other block in a group. If there is more freedom to combine
faulty blocks that are compatible, more blocks can be recovered.
They can be physically adjacent, in the same set or in any location
inside the cache (depending on the desired complexity of block
selection hardware). Each alternative has performance trade-offs,
discussed later.

4.2.1.2. Selector bit table. Selection of the block which the data bit is
read from is performed using a table of selector bits. These are
stored in guaranteed correct cells, and can either cover every bit in-
dex in the block or a number of adjacent bits (e.g. two data bits per
selector in Fig. 5). In this example, each selector bit indicates which
block should be accessed for every pair of adjacent bits. Using few-
er selector bits reduces the number of defects which can be toler-
ated but reduces storage overhead. For example, a single selector
bit covering two adjacent data bits cannot handle the case where
there is a fault in both blocks at that position. Later, we discuss
off-chip caching of selector bits to reduce the die area of on-chip
SRAM.

4.2.1.3. Table configuration. The tables are programmed during
system start-up. Self-test routines determine whether cache cells
are operating reliably at each voltage and frequency point, and
the map is stored in main memory or on disk. When perfor-
mance settings change, the cache is flushed and a new selector
table loaded. These tables could also be hard-wired at manufac-
turing test.

4.2.1.4. Storage overhead. We call the first block to be accessed the
“primary” block, and its paired compatible block the “secondary”
block. For the grouping table, we first consider the most storage-
intensive scenario where blocks are paired anywhere in the cache.
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The grouping table has a number of entries equal to the number of
blocks in the cache. Each entry stores the set and way index of a
compatible block, to be looked up on a read access. The equation
below assumes that there is an entry pointing to another block
for every block position in the cache.

group_table_size = M x N x log,(M x N) (13)

As a lower-cost alternative, the storage requirement for pairs lim-
ited to the same set is given below. When implemented as an asso-
ciative look-up, half of the blocks in a set have a pointer to another
block in the same set.

. N
group_table_size = 5 X log,(N) x M (14)
Instead of using a grouping table, one could use the existing tag
matching mechanism to simultaneously hit multiple blocks of the
same group since their address tags are identical. It requires that
the group resides in a single set so that address indexes are identical
for each block. A banked cache design where ways are in different
banks would allow fast parallel access to a group of blocks. A
sequential access model is still feasible however, because an extra
cycle to look-up a secondary block does not significantly impact
performance for low-level caches (e.g. L2). Another, less effective
zero-overhead alternative is to use a fixed grouping, for example,
pairing together adjacent blocks.

The error-correcting ability of each variant is shown in Fig. 6.
The results were derived from simulation, and pairs were formed
using a greedy algorithm that allocates each faulty block with

the next free compatible faulty block in sequential order. An opti-
mal grouping will be even more effective.

Adjacent pairing is least effective and is not improved with
associativity (Fig. 6a). It is clear that arbitrary pairing (Fig. 6b) is
most effective at high error rates, although the per-set limitation
(Fig. 6¢) can be almost as effective. Increased associativity helps
in this case by providing more pairing alternatives and can be seen
in processors such as Niagara, with a 12-way L2 cache [17]. The fi-
nal plot (Fig. 6d) represents blocks restricted to a set, and one
selector bit is used for every two bits in the block. Fault tolerance
is obviously reduced but there are now half as many selector bits.

The number of selector bits (used to choose one good bit from a
group of G bits at each bit index) is the logarithm of the number of
bits in the group. There are B selectors per cache block, and (MxN)/
G logical blocks after grouping.

selector_bits = Mé N

where G is the number of blocks in each group.

x (log,(G) x B) (15)

GC_bits = MN -+ group_table_size
+ selector_bits (guaranteed correct storage).

4.2.1.5. Fault model. The parameter G can be varied, but all analysis
in this paper uses block pairs (G = 2).

2
Paos =P+ () % P x (1= Py} (16)
. . 1
fraction_repairedgp, = 7% (1 = Phur)” = Pgooa) (17)
Favail = P + (1 — Pogy) x fraction_repairedcgp, (18)

Each logical bit is formed from two bits. A set of two faulty physical
blocks are compatible and can be recovered into a single logical
block when;

e At most one of the grouped bits at each bit index are faulty, and
e This is true at every bit index in the block of B bits.

Note that we make an adjustment pgooq to remove the impossi-
ble cases where any block contains no faults, as per TMR.
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(d) Pairs must be in same set, 2 logical bits per selector bit

Fig. 6. Percentage of faulty blocks using block pairing (G = 2) for different group restrictions. Block size = 32 bytes.

4.2.2. Selector bit caching for block grouping

Compared with the other schemes, block grouping has strong
fault tolerance characteristics but a potentially large storage over-
head. By caching the working set of selector bits in on-chip SRAM
and keeping less frequently used bits off-chip, area overheads can
be reduced without significant performance impact. Although this
appears only to move the reliability problem elsewhere, there are
several benefits;

e Write accesses to the off-chip storage are infrequent (for exam-
ple, at manufacturing test, or if BIST is re-run when there is a sig-
nificant temperature change). Therefore the table could be
stored in FLASH memory, for example. Off-chip DRAM is another
possibility and in both cases there will be a reduction in total
area and energy consumption. Although off-chip bus traffic
when retrieving cached selector bits requires more energy than
an on-chip access, this is an infrequent event.

e Moving the storage off-chip decouples most of the guaranteed
correct storage from the CPU manufacturing process. This allows
for a larger proportion of on-chip SRAM cells to be scaled down
with the process technology. A different technology can be used
off-chip.

We ran an initial study to see what performance and storage
impact selector bit caching would have. The design in Fig. 4 was
extended to have the working set of selector bit pages (stored in
a parallel structure to the TLB) on-chip. On a TLB miss, we assume
that the page table is accessed from main memory, So access
latency to a small off-chip DRAM holding pages of selector bits is
already accounted for. It is possible to use a small, standard cache

rather than page-based method of finding the working set. This re-
quires the use of tags, but makes more efficient use of storage
space.

Using the same M5 configuration as before, we recorded TLB
miss rates for varying numbers of TLB entries, then derived the
performance hit for off-chip selector bit loading. For more realism
and to support virtual memory, the simulator was run in full-sys-
tem mode and benchmarks were run to completion under Linux.
The results are given in Table 3. By keeping just the working set
of cache pages in on-chip SRAM we have reduced the on-die
storage overhead from 50% to less than 10%. Note that we used
one selector bit per logical bit (see Fig. 6¢c). We opted to use 24
TLB entries because the performance data indicated much smaller

Table 3

Selector bit caching parameters and results

Parameters Value
Cache size 1024 kB
Linux page size 8 kB
Logical bits per selector bit 1
Selector page size 4 kB
Full grouping table size/OBI table size 4 kB/2 kB
Set-restricted grouping table size 3 kB
On-chip SRAM selector bit storage 96 kB
Off-chip DRAM selector bit storage 512 kB

ITLB/DTLB entries 8/16

Selector bit table DRAM throughput 32 bytes/cycle
Total storage overhead of full group table 12.3%

Total storage overhead of set-limited group table 9.9%

Total storage overhead of tag-based grouping table 9.6%




D. Roberts et al./ Microprocessors and Microsystems 32 (2008) 244-253 251

slowdowns of 2% and 8% respectively for the Cholesky and Ocean-
NonContig benchmarks. Due to the larger working set of Ocean-
NonContig, increasing the number of data TLB entries does not
significantly reduce miss rate.

5. Results
5.1. Performance and area under voltage scaling

We performed performance and power simulations using cell
type C (1.5x the area of the smallest cell we considered in Fig. 2)
and a rotating voltage schedule for the CPU. Every 20 ms (4 x 10’
cycles @ 2 GHz), the voltage was changed to the next level in a in
sequence from 0.7, 0.8, 0.9, 1.0 and 1.1V. In reality, voltage
changes will be less frequent in a DVS system. Because a large
number of identical voltage changes occurred over the duration
of each benchmark, a first-order approximation of energy con-
sumption can be obtained by comparing overall execution times
(assuming equivalent average power in each benchmark).

It is envisioned that each performance change will require the
following additional steps;

e Invalidate dirty blocks and write back to the next level of the
memory hierarchy (or high-speed local storage), if they are
known to contain un-correctable faults.

¢ Enable the appropriate bad block map for the new performance
level.

e Reinstate saved blocks, or allow to be fetched when next
accessed, as usual.

Fig. 7a compares the L2 miss rate for each benchmark with the
same voltage schedule using different fault-tolerance schemes.
PAIR ADJ and PAIR ARB refer to 2-block grouping schemes where
AD] means only physically adjacent bad blocks are paired, and
ARB means that blocks are paired arbitrarily throughout the cache
using the same greedy algorithm used for Fig. 6. 5MOD and 7MOD
implement 5- and 7-modular redundancy for each cell (represent-
ing 5 MB and 7 MB of physical storage), and NO FAULT refers to an
ordinary error-free cache.

It is clear that execution time (and IPC) are relatively insensitive
to L2 miss rates (see Fig. 7b). Note that arbitrary pairing generally
performs better than 5-modular redundancy in most cases, with-

(a) L2 miss rate

WOBI BSEC ODEC OPAIR ADJ ZPAIR ARB #5MOD E7MOD ENO FAULT

L2 miss rate (%)

Benchmark

out the large, fixed area overhead. Relative to OBI, PAIR ARB
achieves an average 48% reduction in L2 miss rate and 13% reduc-
tion in execution time.

5.2. Performance under cell scaling

The E,., metric is shown in Fig. 8a. The most area efficient
scheme is to use an OBI with TMR, as long as a cell is not scaled be-
low size 1.4. This can be seen in the figure as the point of greatest
E.rea value. In fact, there is only a marginal improvement over using
an OBI alone. Therefore, the area overhead of stronger error correc-
tion offsets the benefit of cell shrinking. The off-chip caching and
arbitrary pairing variant was used for the grouping (GRP2) scheme.
Therefore it initially has the worst E,., value due to the on-chip
selector and grouping tables, but outperforms the others at smaller
cell sizes due to superior fault-tolerance.

In Fig. 9 we examine E,., and as voltage is varied. This shows
the same trends as Fig. 8. This means that cache performance will
drop significantly depending on the fault-tolerance scheme and
how far voltage is scaled in low-power (or low activity) modes.
CPUs using DVS should dynamically select a fault-tolerance
scheme with the highest F,,,; at the operating voltage. For exam-
ple, Fig. 9b indicates that DEC should be used down to 0.86V
and GRP2 below that.

5.3. Energy saving using block grouping at low V

An example of the energy benefits of block grouping is as fol-
lows. In an ultra-low voltage mode of 0.76 V (Fig. 9b) conventional
SEC code has an F,y,; of around 0.02 while GRP2 is approximately
0.45. This means that GRP2 provides much more L2 cache at that
voltage, reducing miss rate and improving IPC. Considering the
Barnes benchmark in Fig. 3b, IPC for 86% disabled blocks is at most
1.14 while for grouping the IPC is 1.76 (55% disabled blocks). This
means that execution using grouping completes at least (1 — 1.14/
1.76) = 35% sooner.

Energy savings are offset by the overhead of the selector bits
and grouping table. If these are on-chip with one selector bit per
data bit position, they will consume approximately 512 kB (or
half the cache size). Despite this overhead, there will be a net en-
ergy saving. Using the power consumption of a 512 kB, 130 nm
cache to represent the overhead of grouping [18], and that of a

(b) Normalized IPC

WOBI BSEC ODEC COPAIR ADJ ZPAIR ARB @5MOD E27MOD ENO FAULT
2.0

Normalized IPC
P b

o
2
L

0.0 -

Benchmark

Fig. 7. L2 miss rate in (a) and normalized IPC in (b) for each technique. A-Cholesky, B-FFT, C-LUContig, D-Radix, E-OceanContig, and F-OceanNoncontig, respectively.
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Fig. 8. Earea in (@) and F,y,; in (b) with device scaling at 1.1 V (64-byte block size). Cell size is relative to the smallest considered size from Fig. 2.
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Fig. 9. E.ea in (2) and Fay, in (b) with voltage scaling (64-byte block size, cell size C from Fig. 2).

Pentium M running at around the same frequency [19] we esti-
mate power consumption for the SEC and grouping schemes (Ta-
ble 4). We use the thermal design power of the processor which
implies the CPU is 100% utilised by the workload. In addition, we
assume that the processor uses SEC fault-tolerance. Even though
we theoretically scale voltage down to 0.76 V, both the processor
and selector table have their voltages scaled by the same factor,
so the power consumption ratio between the two is approxi-
mately the same.

Table 4

Block grouping energy saving example

Parameters Value
Pentium M thermal design power 245 W
Selector table overhead power 26 W
Speedup of grouping relative to SEC 35%
Power with SEC 245W

Power with grouping table
Average power with grouping
Energy savings with grouping

245+26=271W
27.14(1 — 0.35)=17.6 W
28%

6. Conclusions

The analysis in the first part of this paper compared several
ways of maximizing the number of usable cache lines in the pres-
ence of faults. These faults can be a combination of permanent
manufacturing faults as well as ineffective operation at low volt-
ages. Increasing the size of an SRAM cell increases this reliability
at the cost of extra area.

Next, we proposed a novel fault-tolerance scheme that takes
advantage of a region of larger or higher voltage SRAM cells to at-
tain high reliability. The scheme works by grouping two or more
cache lines divided into smaller regions. Selector bits in the high
reliability memory cells are used to specify where the faulty bits
are in the grouped blocks.

It was determined that the previously published OBI-based fault
tolerance is the most area efficient scheme for fault-tolerance at a
single voltage. However, as voltage is scaled down, maximum per-
formance and energy savings are obtained by switching from DEC
to our GRP2 scheme.

Instead of taking advantage of future scaling to reduce SRAM
cell size, scaling should not go beyond a certain point. This is be-
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cause the area overhead of trying to protect the smaller, but much
less reliable cells is greater than that of not scaling the cells at all.
However, error correction still has a place in cache design for low
voltage performance and soft error tolerance. The strength of this
error correction will be a function of expected soft error rates
and how aggressively DVS is applied.
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